资    源
  • 资    源
  • 文    章


当前位置:查字典生物网 >生物博览 >“光子”是传递电磁相互作用的基本粒子

“光子”是传递电磁相互作用的基本粒子
来源: 查字典生物网| 2016-03-09 发表| 教学分类:生物博览

生物博览

“光子”是传递电磁相互作用的基本粒子

光量子,简称光子,是传递电磁相互作用的基本粒子,是一种规范玻色子。光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。与大多数基本粒子(如电子和夸克)相比,光子没有静止质量(爱因斯坦的运动质量公式中,光子的v = C,使得公式分母为0,但光子的运动质量m具有有限值,故光子的静止质量必须为零。),光子有速度、能量、动量、质量,这意味着其在真空中的传播速度是光速。

光子的概念是爱因斯坦在1905年至1917年间提出的,当时被普遍接受的关于光是电磁波的经典电磁理论无法解释光电效应等实验现象。相对于当时的其他半经典理论在麦克斯韦方程的框架下将物质吸收和发射光的能量量子化,爱因斯坦首先提出光本身就是量子化的,这种光量子(英语:light quantum,德语:das Lichtquant)被称作光子。这一概念的形成带动了实验和理论物理学在多个领域的巨大进展,例如激光、玻色-爱因斯坦凝聚、量子场论、量子力学的统计诠释、量子光学和量子计算等。根据粒子物理的标准模型,光子是所有电场和磁场的产生原因,而它们本身的存在,则是满足物理定律在时空内每一点具有特定对称性要求的结果。光子的内秉属性,例如质量、电荷、自旋等,则是由规范对称性所决定的。

1905年,年轻的爱因斯坦发展了普朗克的量子说。他认为,电磁辐射在本质上就是一份一份不连续的,无论是在原子发射和吸收它们的时候,还是在传播过程中都是这样。爱因斯坦称它们为光量子,简称光子,并用光量子说解释了光电效应,这成为爱因斯坦获得1921年诺贝尔物理学奖的主要理由。其后,康普顿散射进一步证实了光的粒子性。它表明,不仅在吸收和发射时,而且在弹性碰撞时光也具有粒子性,是既有能量又有动量的粒子。如此,光就既具有波动性(电磁波),也具有粒子性(光子),即具有波粒二象性。后来,德布罗意又将波粒二象性推广到了所有的微观粒子。

光子具有能量=h和动量p=h∕c,是自旋为1的玻色子。它是电磁场的量子,是传递电磁相互作用的传播子。原子中的电子在发生能级跃迁时,会发射或吸收能量等于其能级差的光子。正反粒子相遇时将发生湮灭,转化成为几个光子。光子本身不带电,它的反粒子就是它自己。光子的静止质量为零,在真空中永远以光速c运动,而与观察者的运动状态无关。由于光速不变的特殊重要性,成为建立狭义相对论的两个基本原理之一。

与其他量子一样,光子具有波粒二象性:光子能够表现出经典波的折射、干涉、衍射等性质(关于光子的波动性是经典电磁理论描述的电磁波的波动还是量子力学描述的几率波的波动这一问题请参考下文波粒二象性和不确定性原理);而光子的粒子性则表现为和物质相互作用时不像经典的波那样可以传递任意值的能量,光子只能传递量子化的能量,即: 这里是普朗克常数,是光波的频率。对可见光而言,单个光子携带的能量约为410-19焦耳,这样大小的能量足以激发起眼睛上感光细胞的一个分子,从而引起视觉。除能量以外,光子还具有动量和偏振态,不过由于有量子力学定律的制约,单个光子没有确定的动量或偏振态,而只存在测量其位置、动量或偏振时得到对应本征值的几率。

光子的概念也应用到物理学外的其他领域当中,如光化学、双光子激发显微技术,以及分子间距的测量等。在当代相关研究中,光子是研究量子计算机的基本元素,也在复杂的光通信技术,例如量子密码学等领域有重要的研究价值。

“光子”是传递电磁相互作用的基本粒子

作用

光子是传递电磁相互作用的基本粒子,是一种规范玻色子。光子是电磁辐射的载体,而在量子场论中光子被认为是电磁相互作用的媒介子。与大多数基本粒子相比,光子的静止质量为零,这意味着其在真空中的传播速度是光速。与其他量子一样,光子具有波粒二象性:光子能够表现出经典波的折射、干涉、衍射等性质;而光子的粒子性则表现为和物质相互作用时不像经典的粒子那样可以传递任意值的能量,光子只能传递量子化的能量。

历史起源

光子起源

早在1900年,M.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一份的能量为h;1905年阿尔伯特爱因斯坦进一步提出光波本身就不是连续的而具有粒子性,爱因斯坦称之为光量子;1923年A.H.康普顿成功地用光量子概念解释了X光被物质散射时波长变化的康普顿效应,从而光量子概念被广泛接受和应用,1926年正式命名为光子。

根据计算:

中子的质量:1.674927211(84)10-27 千克;中子的半径:1.11337557(48)费米;

质子的质量:1.672621637(83)10-27 千克;质子的半径:1.11286448(48)费米;

电子的质量:9.10938215(45)10-31千克;电子的半径:0.090880914(40)费米;

光子的质量:9.347543(38)10-36 千克;光子的半径:0.0031349374(29)费米。

光子的能量:4.200577(17)10-19焦耳,2.621794(11)电子伏特;

光子的频率:6.339470(26)1014 赫兹;

光子的波长:472.8983(20)纳米,正好位于青蓝色的光的波长的中心位置473.5纳米附近。

当光的质量大于临界质量时,很容易被电子所吸收或散射;当光的质量小于临界质量时,不太容易被电子所吸收,即很容易被电子很快发射掉;而处于临界质量附近的光子较容易被电子吸收,并向不同方向发射,由此而形成靑蓝色的天空。

“光子”是传递电磁相互作用的基本粒子

名字由来

光子起初被爱因斯坦命名为光量子 。 光子的现代英文名称photon源于希腊文(在罗马字下写为phocircs),是由美国物理化学家吉尔伯特牛顿路易斯在他的一个假设性理论中创建的。 在路易士的理论中,photon指的是辐射能量的最小单位,其不能被创造也不能被毁灭。 尽管由于这一理论与大多数实验结果相违背而从未得到公认,photon这一名称却很快被很多物理学家所采用。 根据科幻小说作家、科普作家艾萨克阿西莫夫的记载, 阿瑟康普顿于1927年首先用photon来称呼光量子。

在物理学领域,光子通常用希腊字母 (音:Gamma )表示,这一符号有可能来自由法国物理学家维拉德( Paul Ulrich Villard )于1900年发现的伽玛射线,伽玛射线由卢瑟福和英国物理学家安德雷德 ( Edward Andrade )于1914年证实是电磁辐射的一种形式。 在化学和光学工程领域,光子经常被写为h ,即用它的能量来表示;有时也用f来表示其频率,即写为h f 。

光子结构

所谓光子结构的测量,在量子色动力学中是指观测光子场的量子涨落,这种能量涨落用一个光子的结构方程来描述。对光子结构的测量一般都依赖于对光子与电子,以及正负电子的对撞时的深度非线性散射的观测[80]。根据量子色动力学,光子既能以无尺寸粒子,即轻子的方式参与相互作用;也能以一组夸克和胶子的集合体,即强子的方式参与。决定光子结构的并不是像质子那样由传统的价夸克分布,而是由轻子的涨落而形成的部分子的集合。

光子理论

光子有速度、能量、动量、质量。光子不可能静止。光子可以变成其它物质(如一对正负电子),但能量守恒、动量守恒。

历史发展

到十八世纪为止的大多数理论中,光被描述成由无数微小粒子组成的物质。由于微粒说不能较为容易地解释光的折射、衍射和双折射等现象,笛卡尔(1637年) 、胡克(1665年)和惠更斯(1678年)等人提出了光的(机械)波动理论;但在当时由于牛顿的权威影响力,光的微粒说仍然占有主导地位。十九世纪初,托马斯杨和菲涅尔的实验清晰地证实了光的干涉和衍射特性,到1850年左右,光的波动理论已经完全被学界接受。1865年,麦克斯韦的理论预言光是一种电磁波,证实电磁波存在的实验由赫兹在1888年完成,这似乎标志着光的微粒说的彻底终结。

然而,麦克斯韦理论下的光的电磁说并不能解释光的所有性质。例如在经典电磁理论中,光波的能量只与波场的能量密度(光强)有关,与光波的频率无关;但很多相关实验,例如光电效应实验,都表明光的能量与光强无关,而仅与频率有关。类似的例子还有在光化学的某些反应中,只有当光照频率超过某一阈值时反应才会发生,而在阈值以下无论如何提高光强反应都不会发生。

与此同时,由众多物理学家进行的对于黑体辐射长达四十多年(1860-1900)的研究因普朗克建立的假说而得到终结,普朗克提出任何系统发射或吸收频率为nu,/math的电磁波的能量总是E = hnu,/math的整数倍。爱因斯坦由此提出的光量子假说则能够成功对光电效应作出解释,爱因斯坦因此获得1921年的诺贝尔物理学奖。爱因斯坦的理论先进性在于,在麦克斯韦的经典电磁理论中电磁场的能量是连续的,能够具有任意大小的值,而由于物质发射或吸收电磁波的能量是量子化的,这使得很多物理学家试图去寻找是怎样一种存在于物质中的约束限制了电磁波的能量只能为量子化的值;而爱因斯坦则开创性地提出电磁场的能量本身就是量子化的 。爱因斯坦并没有质疑麦克斯韦理论的正确性,但他也指出如果将麦克斯韦理论中的经典光波场的能量集中到一个个运动互不影响的光量子上,很多类似于光电效应的实验能够被很好地解释。在1909年和1916年,爱因斯坦指出如果普朗克的黑体辐射定律成立,则电磁波的量子必须具有p=frac{lambda}/math的动量,以赋予它们完美的粒子性。光子的动量在1926年由康普顿在实验中观测到 ,康普顿也因此获得1927年的诺贝尔奖。

爱因斯坦等人的工作证明了光子的存在,随之而来的问题是:如何将麦克斯韦关于光的电磁理论和光量子理论统一起来呢?爱因斯坦始终未能找到统一两者的理论,但如今这个问题的解答已经被包含在量子电动力学和其后续理论:标准模型中。

【“光子”是传递电磁相互作用的基本粒子】相关文章:

美欲培育“恐龙鸡” 史前灭绝物种重返地球?

水下生物摄影大赛 侏儒海马藏身红珊瑚夺冠(图)

“麦田怪圈”是怎么形成的

摄影师拍到逆戟鲸冲上岸捕猎海豹瞬间(图)

中科院昆明植物所专家又发现3个新剧毒菌种(图)

香港“蛇王”捉四米蟒蛇 被咬伤手臂但没有大碍(图)

研究实现用蘑菇茄子运输天然气

稀有鳐鱼面孔诡异如同幽灵

动物的“超能力”

杀人鲸上演猎食秀:追杀海豚抛上高空撞断脊柱(图)

最新生物
热门生物
精品推广
随机推荐生物
学科中心